On manifolds with nonnegative curvature on totally isotropic 2-planes

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Manifolds with Nonnegative Isotropic Curvature

We prove that if (M, g) is a compact locally irreducible Riemannian manifold with nonnegative isotropic curvature, then one of the following possibilities hold: (i) M admits a metric with positive isotropic curvature (ii) (M, g) is isometric to a locally symmetric space (iii) (M, g) is Kähler and biholomorphic to CP n. This is implied by the following two results: (i) Let (M, g) be a compact, l...

متن کامل

On the Smooth Rigidity of Almost-einstein Manifolds with Nonnegative Isotropic Curvature

Let (Mn, g), n ≥ 4, be a compact simply-connected Riemannian manifold with nonnegative isotropic curvature. Given 0 < l ≤ L, we prove that there exists ε = ε(l, L, n) satisfying the following: If the scalar curvature s of g satisfies l ≤ s ≤ L and the Einstein tensor satisfies |Ric − s n g| ≤ ε then M is diffeomorphic to a symmetric space of compact type. This is a smooth analogue of the result...

متن کامل

On the Complex Structure of Kähler Manifolds with Nonnegative Curvature

We study the asymptotic behavior of the Kähler-Ricci flow on Kähler manifolds of nonnegative holomorphic bisectional curvature. Using these results we prove that a complete noncompact Kähler manifold with nonnegative bounded holomorphic bisectional curvature and maximal volume growth is biholomorphic to complex Euclidean space C . We also show that the volume growth condition can be removed if ...

متن کامل

Boundary Convexity on Manifolds with Nonnegative Ricci Curvature

We introduce a new geometric invariant Λ to measure the convexity of the boundary of a riemannian manifold with nonnegative Ricci curvature in the interior. Based on a theorem of Perelman, we are able to show that this new invariant has topological implications. More specifically, we show that if Λ is close to 1 and the sectional curvature is positive on the boundary, then the manifold is contr...

متن کامل

On the Metric Structure of Open Manifolds with Nonnegative Curvature

An open manifold M with nonnegative sectional curvature contains a compact totally geodesic submanifold S called the soul. In his solution of the Cheeger-Gromoll conjecture, G. Perelman showed that the metric projection π : M → S was a C Riemannian submersion which coincided with a map previously constructed by V. Sharafutdinov. In this paper we improve Perelman’s result to show that π is in fa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Transactions of the American Mathematical Society

سال: 1993

ISSN: 0002-9947,1088-6850

DOI: 10.1090/s0002-9947-1993-1123458-2